1

R as a Tool in Computational Finance

John P. Nolan
Department of Mathematics and Statistics, American University, Washington, DC 20016-8050 USA jpnolan@american.edu

Key words: R Project, statistical analysis, programming, graphics

1.1 Introduction

R is a powerful, free program for statistical analysis and visualization. R has superb graphics capabilities and built-in functions to evaluate all common probability distributions, perform statistical analysis, and to do simulations. It also has a flexible programming language that allows one to quickly develop custom analyses and evaluate them. R includes standard numerical libraries: LAPACK for fast and accurate matrix multiplication, QUADPACK for numerical integration, and (univariate and multivariate) optimization routines. For compute intensive procedures, advanced users can call optimized code written in C or Fortran in a straightforward way, without having to write special interface code.

The R program is supported by a large international team of volunteers who maintain versions of R for multiple platforms. In addition to the base R program, there are hundreds of packages written for R. In particular, there are dozens of packages for solving problems in finance. Information on implementations on obtaining the R program and documentation are given in Appendix 1.

A New York Times article by Vance (2009a) discussed the quick growth of R and reports that an increasing number of large companies are using R for analysis. Among those companies are Bank of America, Pfizer, Merck, InterContinental Hotels Group, Shell, Google, Novartis, Yale Cancer Center, Motorola, Hess. It is estimated in Vance (2009b) that over a quarter of a million people now use R.

The following three simple examples show how to get free financial data and how to begin to analyze it. Note that R uses the back arrow <- for assignment and that the > symbol is used as the prompt R uses for input.
The following six lines of R code retrieve the adjusted closing price of IBM stock for 2008 from the web, compute the (logarithmic) return, plot both time series as shown in Figure 1.1, give a six number summary of the return data, and then finds the upper quantiles of the returns.

```R
> x <- get.stock.price("IBM")
IBM has 253 values from 2008-01-02 to 2008-12-31
> y <- diff(log(x))
> ts.plot(x,main="price")
> ts.plot(y,main="return")
> summary(y)

       Min.    1st Qu.     Median       Mean    3rd Qu.       Max.  
-0.060990 -0.012170  -0.000336  -0.000797  0.010620  0.091390

> quantile(y, c(.9,.95,.99) )

       90%     95%     99% 
0.02474494 0.03437781 0.05343545
```

The source code for the function `get.stock.price` and other functions used below are given in Appendix 2. The next example shows more information for 3 months of Google stock prices, using the function `get.stock.data` that retrieves stock information that includes closing/low/high prices as well as volume.

```R
> get.stock.data("GOOG",start.date=c(10,1,2008),stop.date=c(12,31,2008))
```
Fig. 1.2. Google stock prices and volume in the 4th quarter of 2008.

GOOG has 64 values from 2008-10-01 to 2008-12-31
> par(mar=c(1,4,2,2)) # graphing option
> num.fig <- layout(matrix(c(1,2)),heights=c(5,2)) # setup a multiplot
> ts.plot(x$Close,ylab="price (in $)",main="Google prices - 4th quarter 2008")
> lines(x$Low,col="red")
> lines(x$High,col="blue")
> legend(45,400,c("high","close","low"),lty=1,col=c("blue","black","red"))
> barplot(x$Volume/100000,ylab="Million",col="lightblue",main="\nVolume")

Another function get.portfolio.returns will retrieve multiple stocks in a portfolio. Dates are aligned and a matrix of returns is the results. The following code retrieves the returns from IBM, General Electric, Ford and Microsoft and produces scatter plots of the each pair of stocks. The last two commands show the mean return and covariance of the returns

> x <- get.portfolio.returns(c("IBM","GE","Ford","MSFT"))
IBM has 253 values from 2008-01-02 to 2008-12-31
GE has 253 values from 2008-01-02 to 2008-12-31
Ford has 253 values from 2008-01-02 to 2008-12-31
MSFT has 253 values from 2008-01-02 to 2008-12-31
253 dates with values for all stocks, 252 returns calculated
> pairs(x)
> str(x)
'data.frame': 252 obs. of 4 variables:
$\text{IBM} : \text{num} \ 0.00205\ -0.03665\ -0.01068\ -0.02495\ 0.00742 \ldots$

$\text{GE} : \text{num} \ 0.00118\ -0.02085\ 0.00391\ -0.02183\ 0.01128 \ldots$

$\text{Ford} : \text{num} \ -0.01702\ -0.00862\ -0.00434\ -0.02643\ 0.00889 \ldots$

$\text{MSFT} : \text{num} \ 0.00407\ -0.02823\ 0.00654\ -0.03405\ 0.0293 \ldots$

> \text{mean(x)}

<table>
<thead>
<tr>
<th></th>
<th>IBM</th>
<th>GE</th>
<th>Ford</th>
<th>MSFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>0.0007974758</td>
<td>-0.0030421414</td>
<td>-0.0002416205</td>
<td>-0.0022856306</td>
</tr>
</tbody>
</table>

> \text{var(x)}

<table>
<thead>
<tr>
<th></th>
<th>IBM</th>
<th>GE</th>
<th>Ford</th>
<th>MSFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>0.0005138460</td>
<td>0.0005457266</td>
<td>0.0001258669</td>
<td>0.0004767922</td>
</tr>
<tr>
<td>GE</td>
<td>0.0005457266</td>
<td>0.0012353023</td>
<td>0.0003877436</td>
<td>0.0005865461</td>
</tr>
<tr>
<td>Ford</td>
<td>0.0001258669</td>
<td>0.0003877436</td>
<td>0.0016194549</td>
<td>0.0001845064</td>
</tr>
<tr>
<td>MSFT</td>
<td>0.0004767922</td>
<td>0.0005865461</td>
<td>0.0001845064</td>
<td>0.0009183715</td>
</tr>
</tbody>
</table>

The rest of this paper is organized as follows. Section 1.2 gives a brief introduction to the R language, Section 1.3 gives several examples of using R in finance, and Section 1.4 discusses the advantages and disadvantages of open source vs. commercial software. Finally, the two appendices give information on obtaining the R program and the R code used to obtain publicly available data on stocks.

1.2 Overview/tutorial of the R language

This section is a brief introduction to R. It is assumed that the reader has some basic programming skills; this is not intended to teach programming from scratch. You can find basic help within the R program by using the question mark before a command: \texttt{?plot} (alternatively \texttt{help("plot")}) will give a description of the \texttt{plot} command, with some examples at the bottom of the help page. Appendix 1 gives information on more documentation.

One powerful feature of R is that operations and functions are vectorized. This means one can perform calculations on a set of values without having to program loops. For example, \texttt{3*sin(x)+y} will return a single number if \texttt{x} and \texttt{y} are single numbers, but a vector if \texttt{x} and \texttt{y} are vectors. (There are rules for what to do if \texttt{x} and \texttt{y} have different lengths, see below.)

A back arrow \texttt{<-}, made from a less than sign and a minus sign, is used for assignment. The equal sign is used for other purposes, e.g. specifying a title in the plots above. Variable and function names are case sensitive, so \texttt{X} and \texttt{x} refer to different variables. Such identifiers can also contain periods, e.g. \texttt{get.stock.price}. Comments can be included in your R code by using a \# symbol; everything on the line after the \# is ignored. Statements can be separated by a semicolon within a line, or placed on separate lines without a seperator.
1.2.1 Data types and arithmetic

Variables are defined at run time, not by a formal declaration. The type of a variable is determined by the type of the expression that defines it, and can change from line to line. There are many data types in R. The one we will work with most is the numeric type `double` (double precision floating point numbers). The simplest numeric type is a single value, e.g. `x <- 3`. Most of the time we will be working with vectors, for example, `x <- 1:10` gives the sequence from 1 to 10. The statement `x <- seq(-3,3,0.1)` generates an evenly spaced sequence from -3 to 3 in steps of size 0.1. If you have an arbitrary list of numbers, use the combine command, abbreviated `c(...)`, e.g. `x <- c(1.5, 8.7, 3.5, 2.1, -8)` defines a vector with 5 elements.
You access the elements of a vector by using subscripts enclosed in square brackets: \(x[1], x[i], \) etc. If \(i \) is a vector, \(x[i] \) will return a vector of values. For example, \(x[3:5] \) will return the vector \(c(x[3], x[4], x[5]) \).

The normal arithmetic operations are defined: \(+, -, *, /\). The power function \(x^p \) is \(x^p \). A very useful feature of R is that almost all operations and functions work on vectors elementwise: \(x + y \) will add the components of \(x \) and \(y \), \(x * y \) will multiply the components of \(x \) and \(y \), \(x^2 \) will square each element of \(x \), etc. If two vectors are of different lengths in vector operations, the shorter one is repeated to match the length of the longer. This makes good sense in some cases, e.g. \(x + 3 \) will add 3 to each element of \(x \), but can be confusing in other cases, e.g. \(1:10 + c(1,0) \) will result in the vector \(c(2, 2, 4, 4, 6, 6, 8, 8, 10, 10) \).

Matrices can be defined with the \texttt{matrix} command: \(a \leftarrow \text{matrix}(c(1,5, 4,3,-2,5), \text{nrow}=2, \text{ncol}=3) \) defines a \(2 \times 3 \) matrix, filled with the values specified in the first argument (by default, values are filled in one column at a time; this can be changed by using the \texttt{byrow=TRUE} option in the \texttt{matrix} command). Here is a summary of basic matrix commands:

- \(a + b \) adds entries element-wise \((a[i,j] + b[i,j])\),
- \(a * b \) is element by element (not matrix) multiplication \((a[i,j] * b[i,j])\),
- \(a \%\%\% b \) is matrix multiplication,
- \(\text{solve}(a) \) inverts \(a \),
- \(\text{solve}(a,b) \) solves the matrix equation \(a x = b \),
- \(\text{t}(a) \) transposes the matrix \(a \),
- \(\text{dim}(a) \) gives dimensions (size) of \(a \),
- \(\text{pairs}(a) \) shows a matrix of scatter plots for all pairs of columns of \(a \),
- \(a[i,] \) selects row \(i \) of matrix \(a \),
- \(a[,j] \) selects column \(j \) of matrix \(a \),
- \(a[1:3,1:5] \) selects the upper left \(3 \times 5 \) submatrix of \(a \).

Strings can be either a single value, e.g. \(a \leftarrow \text{"This is one string"} \), or vectors, e.g. \(a \leftarrow c(\text{"This"}, \text{"is"}, \text{"a"}, \text{"vector"}, \text{"of"}, \text{"strings"}) \).

Another common data type in R is a data frame. This is like a matrix, but can have different types of data in each column. For example, \texttt{read.table} and \texttt{read.csv} return data frames. Here is an example where a data frame is defined manually, using the \texttt{cbind} command, which “column binds” vectors together to make a rectangular array.

\[
\begin{align*}
\text{name} & \leftarrow c(\text{"Peter"}, \text{"Erin"}, \text{"Skip"}, \text{"Julia"}) \\
\text{age} & \leftarrow c(25, 22, 20, 24) \\
\text{weight} & \leftarrow c(180, 120, 160, 130) \\
\text{info} & \leftarrow \text{data.frame(cbind(name,age,weight))}
\end{align*}
\]

A more flexible data type is a list. A list can have multiple parts, and each part can be a different type and length. Here is a simple example:
You access a field in a list by using \$, e.g. `x$customer` or `x$purchases[2]`, etc.

R is object oriented with the ability to define classes and methods, but we will not go into these topics here. You can see all defined objects (variables, functions, etc.) by typing `objects()`. If you type the name of an object, R will show you its value. If the data is long, e.g. a vector or a list, use the structure command `str` to see a summary of what the object is.

R has standard control statements. A `for` loop lets you loop through a body of code a fixed number of times, while loops let you loop until a condition is true, if statements let you execute different statements depending on some logical condition. Here are some basic examples. Brackets are used to enclose blocks of statements, which can be multiline.

```r
sum <- 0
for (i in 1:10) {sum <- sum + x[i] }

while (b > 0) { b <- b - 1 }

if (a < b) { print("b is bigger") }
else { print("a is bigger") }
```

1.2.2 General Functions

Functions generally apply some procedure to a set of input values and return a value (which may be any object). The standard math functions are built in: `log`, `exp`, `sqrt`, `sin`, `cos`, `tan`, etc. and we will not discuss them specifically. One very handy feature of R functions is the ability to have optional arguments and to specify default values for those optional arguments. A simple example of an optional argument is the log function. The default operation of the statement `log(2)` is to compute the natural logarithm of 2. However, by adding an optional second argument, you can compute a logarithm to any base, e.g. `log(2, base=10)` will compute the base 10 logarithm of 2.

There are hundreds of functions in R, here are some common functions:
1.2.3 Probability distributions

The standard probability distributions are built into R. Here are the abbreviations used for common distributions in R:

<table>
<thead>
<tr>
<th>name</th>
<th>distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>binom</td>
<td>binomial</td>
</tr>
<tr>
<td>geom</td>
<td>geometric</td>
</tr>
<tr>
<td>nbinom</td>
<td>negative binomial</td>
</tr>
<tr>
<td>hyper</td>
<td>hypergeometric</td>
</tr>
<tr>
<td>norm</td>
<td>normal/Gaussian</td>
</tr>
<tr>
<td>chisq</td>
<td>χ^2</td>
</tr>
<tr>
<td>t</td>
<td>Student t</td>
</tr>
<tr>
<td>f</td>
<td>F</td>
</tr>
<tr>
<td>cauchy</td>
<td>Cauchy distribution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>function name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>seq(a,b,c)</code></td>
<td>defines a sequence from a to b in steps of size c</td>
</tr>
<tr>
<td><code>sum(x)</code></td>
<td>sums the terms of a vector</td>
</tr>
<tr>
<td><code>length(x)</code></td>
<td>length of a vector</td>
</tr>
<tr>
<td><code>mean(x)</code></td>
<td>computes the mean</td>
</tr>
<tr>
<td><code>var(x)</code></td>
<td>computes the variance</td>
</tr>
<tr>
<td><code>sd(x)</code></td>
<td>computes the standard deviation of x</td>
</tr>
<tr>
<td><code>summary(x)</code></td>
<td>computes the 6 number summary of x (min, quartiles, mean, max)</td>
</tr>
<tr>
<td><code>diff(x)</code></td>
<td>computes successive differences $x_i - x_{i-1}$</td>
</tr>
<tr>
<td><code>c(x,y,z)</code></td>
<td>combine into a vector</td>
</tr>
<tr>
<td><code>cbind(x,y,...)</code></td>
<td>“bind” x, y,... into the columns of a matrix</td>
</tr>
<tr>
<td><code>rbind(x,y,...)</code></td>
<td>“bind” x, y,... into the rows of a matrix</td>
</tr>
<tr>
<td><code>list(a=1,b="red",...)</code></td>
<td>define a list with components a, b, ...</td>
</tr>
<tr>
<td><code>plot(x,y)</code></td>
<td>plots the pairs of points in x and y (scatterplot)</td>
</tr>
<tr>
<td><code>points(x,y)</code></td>
<td>adds points to existing plot</td>
</tr>
<tr>
<td><code>lines(x,y)</code></td>
<td>adds lines/curves to existing plot</td>
</tr>
<tr>
<td><code>ts.plot(x)</code></td>
<td>plots the values of x as a times series</td>
</tr>
<tr>
<td><code>title("abc")</code></td>
<td>adds a title to an existing plot</td>
</tr>
<tr>
<td><code>par(...)</code></td>
<td>sets parameters for graphing, e.g. <code>par(mfrow=c(2,2))</code> creates a 2 by 2 matrix of plots</td>
</tr>
<tr>
<td><code>layout(...)</code></td>
<td>define a multiplot</td>
</tr>
<tr>
<td><code>scan(file)</code></td>
<td>read a vector from an ascii file</td>
</tr>
<tr>
<td><code>read.table(file)</code></td>
<td>read a table from an ascii file</td>
</tr>
<tr>
<td><code>read.csv(file)</code></td>
<td>read a table from an Excel formatted file</td>
</tr>
<tr>
<td><code>objects()</code></td>
<td>lists all objects</td>
</tr>
<tr>
<td><code>str(x)</code></td>
<td>shows the structure of an object</td>
</tr>
<tr>
<td><code>print(x)</code></td>
<td>prints the single object x</td>
</tr>
<tr>
<td><code>cat(x,...)</code></td>
<td>prints multiple objects, allows simple stream formatting</td>
</tr>
<tr>
<td><code>sprintf(format,...)</code></td>
<td>C style formatting of output</td>
</tr>
</tbody>
</table>
For each probability distribution, you can compute the probability density function (pdf), the cumulative distribution function (cdf), the quantiles (percentiles=inverse cdf) and simulate. The function names are given by adding a prefix to the distribution name.

<table>
<thead>
<tr>
<th>prefix</th>
<th>computes</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>density (pdf)</td>
<td>dnorm(x, mean=0, sd=1)</td>
</tr>
<tr>
<td>p</td>
<td>probability (cdf)</td>
<td>pnorm(x, mean=0, sd=1)</td>
</tr>
<tr>
<td>q</td>
<td>quantiles (percentiles)</td>
<td>qnorm(0.95, mean=0, sd=1)</td>
</tr>
<tr>
<td>r</td>
<td>simulate values</td>
<td>rnorm(1000, mean=0, sd=1)</td>
</tr>
</tbody>
</table>

The arguments to any functions can be found from the `arg` command, e.g. `arg(dnorm)`; more explanation can be found using the built-in help system, e.g. `?dnorm`. Many have default value for arguments, e.g. the mean and standard deviation default to 0 and 1 for a normal distribution. A few simple examples of using these functions follow.

```r
x <- seq(-5,5,.1)
y <- dnorm(x, mean=1,sd=0.5)
plot(x,y,type='l') # plot a N(1,0.25) density

qnorm(0.975) # z_{0.25} = 1.96
pf( 2, 5, 3) # P(F_{5,3} < 2) = 0.6984526
x <- runif(10000) # generate 10000 uniform(0,1) values
```

1.2.4 Two dimensional graphics

The basic plot is an xy-plot of points. You can connect the points to get a line with type='l'. The second part of this example is shown in Figure 1.4.

```r
x <- seq(-10,10,.25)
y <- sin(x)
plot(x,y,type='l')
lines(x,0.5*y,col='red') # add another curve and color
title("Plot of the sin function")

u <- runif(1000)
v <- runif(1000)
par(mfrow=c(2,2)) # make a 2 by 2 multiplot
hist(u)
hist(v)
plot(u,v)
title("scatterplot of u and v")
hist(u+v)
```
Fig. 1.4. Multiplot showing histograms of \(u \), \(v \), \(u + v \), and a scatter plot of \((u,v)\).

There are dozens of options for graphs, including different plot symbols, legends, variable layout of multiple plots, annotations with mathematical symbols, trellis/lattice graphics, etc.

You can export graphs to a file in multiple formats using “File”, “Save as”, and select type (jpg, postscript, png, etc.)

1.2.5 Three dimensional graphics

You can generate basic 3D graphs in standard R using the commands \texttt{persp}, \texttt{contour} and \texttt{image}. The first gives a “perspective” plot of a surface, the second gives a standard contour plot and the third gives a color coded contour map. The examples below show simple cases; there are many more options.

For static graphs, there are three functions: All three use a vector of \(x \) values, a vector of \(y \) values, and a matrix \(z \) of heights, e.g. \(z[i,j] \leftarrow f(x[i], y[j]) \). Here is one example where such a matrix is defined using the function \(f(x, y) = 1/(1 + x^2 + 3y^2) \), and then the surface is plotted.

\begin{verbatim}
x <- seq(-3,3,.1) # a vector of length 61
y <- x
allocate a 61 x 61 matrix and fill with f(x,y) values
z <- matrix(0,nrow=61,ncol=61)
for (i in 1:61) {
 for (j in 1:61) {
 z[i,j] <- 1/(1 + x[i]^2 + 3y[j]^2)
 }
}
plot the surface
persp(x, y, z)
\end{verbatim}
Fig. 1.5. A surface and contour plot.

\[
z[i,j] <- 1/(1+x[i]^2 + 3*y[j]^2)
\]

par(mfrow=c(2,2),pty='s') # set graphics parameters
persp(x,y,z,theta=30,phi=30) # plot the surface
contour(x,y,z)
image(x,y,z)

For clarity, we have used a standard double loop to fill in the z matrix above, one could do it more compactly and quickly using the \texttt{outer} function. You can find more information about options by looking at the help page for each command, e.g. \texttt{?persp} will show help on the \texttt{persp} command. At the bottom of most help pages are some examples using that function. A wide selection of graphics can be found by typing \texttt{demo(graphics)}.

There is a recent R package called \texttt{rgl} that can be used to draw dynamic 3D graphs that can be interactively rotated and zoomed in/out using the mouse. This package interfaces R to the OpenGL library; see the section on Packages below for how to install and load \texttt{rgl}. Once that is done, you can plot the same surface as above with

\texttt{rgl.surface(x,y,z,col="blue")}

This will pop up a new window with the surface. Rotate by using the left mouse button: hold it down and move the surface, release to freeze in that position. Holding the right mouse button down allows you to zoom in and out. You can print or save an rgl graphic to a file using the \texttt{rgl.snapshot} function (use \texttt{?rgl.snapshot} for help).
1.2.6 Obtaining financial data

If you have data in a file in ascii form, you can read it with one of the R read commands:

- `scan("test1.dat")` will read a vector of data from the specified file in free format.
- `read.table("test2.dat")` will read a matrix of data, assuming one row per line.
- `read.csv("test3.csv")` will read a comma separate value file (Excel format).

The examples in the first section and those below use R functions developed for a math finance class taught at American University to retrieve stock data from the Yahoo finance website. Appendix 2 lists the source code that implements the following three functions:

- `get.stock.data`: Get a table of information for the specified stock during the given time period. A data frame is returned, with Date, Open, High, Low, Close, Volume, and Adj.Close fields.
- `get.stock.price`: Get just the adjusted closing price for a stock.
- `get.portfolio.returns`: Retrieve stock price data for each stock in a portfolio (a vector of stock symbols). Data is merged into a data frame by date, with a date kept only if all the stocks in the portfolio have price information on that date.

All three functions require the stock ticker symbol for the company, e.g. “IBM” for IBM, “GOOG” for Google, etc. Symbols can be looked up online at www.finance.yahoo.com/lookup. Note that the function defaults to data for 2008, but you can select a different time period by specifying start and stop date, e.g. `get.stock.price("GOOG",c(6,1,2005),c(5,31,2008))` will give closing prices for Google from June 1, 2005 to May 31, 2008.

If you have access to the commercial Bloomberg data service, there is an R package named RBloomberg that will allow you to access that data within R.

1.2.7 Script windows and writing your own functions

If you are going to do some calculations more than once, it makes sense to define a function in R. You can then call that function to perform that task any time you want. You can define a function by just typing it in at the command prompt, and then call it. But for all but the simplest functions, you will find it more convenient to enter the commands into a file using an editor. The default file extension is .R. To run those commands, you can either use the `source` command, e.g. `source("mycommands.R")`, or use the top level menu: “File”, then “Source R code”, then select the file name from the pop-up window.
There is a built in editor within R that is convenient to use. To enter your commands, click on “File” in the top level menu, then “New script”. Type in your commands, using simple editing. To execute a block of commands, highlight them with the cursor, and then click on the “run line or selection” icon on the main menu (it looks like two parallel sheets of paper). You can save scripts (click on the diskette icon or use CTRL-S), and open them (from the “File” menu or with the folder icon). If you want to change the commands and functions in an existing script, use “File”, then “Open script”.

Here is a simple example that fits the (logarithmic) returns of price data in S with a normal distribution, and uses that to compute Value at Risk (VaR) from that fit.

```r
compute.VaR <- function( S, alpha, V, T ){
  # compute a VaR for the price data S at level alpha, value V
  # and time horizon T (which may be a vector)

  ret <- diff(log(S))  # return = log(S[i]/S[i-1])
  mu <- mean(ret)
  sigma <- sd(ret)
  cat("mu=",mu," sigma=",sigma," V=",V,"\n")
  for (n in T) {
    VaR <- -V * ( exp(qnorm( alpha, mean=n*mu, sd=sqrt(n)*sigma)) - 1 )
    cat("T=",n," VaR=",VaR,"\n")
  }
}
```

Applying this to Google’s stock price for 2008, we see the mean and standard deviation of the returns. With an investment of value $V=$1000, and 95% confidence level, the projected VaRs for 30, 60, and 90 days are:

```r
> price <- get.stock.price( "GOOG" )
GOOG has 253 values from 2008-01-02 to 2008-12-31
> compute.VaR( price, 0.05, 1000, c(30,60,90) )
mu= -0.003177513 sigma= 0.03444149 V= 1000
T= 30 VaR= 333.4345
T= 60 VaR= 467.1254
T= 90 VaR= 561.0706
```

In words, there is a 5% chance that we will lose more than $333.43 on our $1000 investment in the next 30 days. Banks use these kinds of estimates to keep reserves to cover loses.

1.3 Examples of R code for finance

The first section of this paper gave some basic examples on getting financial data, computing returns, plotting and basic analysis. In this section we briefly illustrate a few more examples of using R to analyze financial data.
1.3.1 Option pricing

For simplicity, we consider the Black-Scholes option pricing formula. The following code computes the value V of a call option for an asset with current price S, strike price K, risk free interest rate r, time to maturity T and volatility σ. It also computes the “Greek” delta: $\Delta = dV/dS$, returning the value and delta in a named list.

```r
call.optionBS <- function(S,K,r,T,sigma) {
  d1 <- (log(S/K)+(r+sigma^2/2)*T) / (sigma*sqrt(T))
  d2 <- (log(S/K)+(r-sigma^2/2)*T) / (sigma*sqrt(T))
  return(list(value=S*pnorm(d1)-K*pnorm(d2),delta=pnorm(d1)))
}
```

```r
> call.optionBS( 100, 105, .02, 90, .1 )

$value
[1] 2.918652

$delta
[1] 0.9898371
```

When the current price is $S = 100$, the strike price is $K = 105$, interest rate $r = 0.2$, $T = 90$ days to maturity and volatility $\sigma = 0.1$, the Black-Scholes price for a call option is 2.92. Also, the delta is 0.9898, meaning that if the price S increases by $1, then the price of the option will increase by about $0.99.

The delta values are used in hedging. The last three lines of the code above compute the price of a call option for varying days until maturity, starting at $2.92 for 90 days until maturity, increasing over time and reaching a max at around day 68 where there is higher uncertainty about what the price will be at day 90, then finally dropping to $0 at the last day. See Figure 1.6.

Note that this last example works without changing the code because R uses vectorization.

1.3.2 Value-at-Risk for a portfolio

Above we looked at a function to compute Value-at-Risk (VaR) for a single asset. We can generalize this to a static portfolio of N assets, with proportion w_i of the wealth in asset i. Large financial institutions are required by the Basel II Accords (see Bank for International Settlements (2009)) to regularly compute VaR and to hold capital reserves to cover losses determined by these numbers. (In practice, one may adjust the weights dynamically, to maximize return or minimize risk based on performance of the individual assets.) As above, we will assume that the (logarithmic) returns are multivariate normal. This makes the problem easy, but unrealistic (see below).
Fig. 1.6. Value of a call option with current price $S = 100$, time to maturity varying from 0 to 90 days, risk free rate $r = 0.02$, and volatility $\sigma = 0.1$.

```r
portfolio.VaR <- function( x, w, V, T=1, alpha=0.05) {
  # compute portfolio VaR by fitting multivariate normal to returns
  # x is a matrix of returns for the portfolio, w are the allocation weights
  # V = total value of investment, T = time horizon (possibly a vector)
  # alpha = confidence level

  # fit multivariate normal distribution
  mu <- mean(x)
covar <- cov(x)

  # compute mean and variance for 1-day weighted returns
  mu1 <- sum(w*mu)
  var1 <- t(w) %*% covar %*% w

  cat("mu1=",mu1," var1=",var1," alpha=",alpha," V=",V,"\nweights:")
  for (i in 1:length(symbols)) {cat(" ",symbols[i],":",w[i]) }
cat("\n")

  # compute VaR for different time horizons
  for (t in T) {
    VaR <- -V * ( exp(qnorm(alpha,mean=t*mu1, sd=sqrt(t*var1))) - 1.0)
cat("T="t," VaR="VaR,"\n")
  }
}
```
Applying this to a portfolio of equal investments in Google, Microsoft, GE and IBM for 2008 data, and an investment of $100000, we find the 95% VaR values for 1 day, 5 days and 30 days with the following.

```r
> x <- get.portfolio.returns( c("GOOG","MSFT","GE","IBM") )
GOOG has 253 values from 2008-01-02 to 2008-12-31
MSFT has 253 values from 2008-01-02 to 2008-12-31
GE has 253 values from 2008-01-02 to 2008-12-31
IBM has 253 values from 2008-01-02 to 2008-12-31
253 dates with values for all stocks, 252 returns calculated
> portfolio.VaR( x, c(.25,.25,.25,.25), 100000, c(1,5,30) )
mu1= -0.002325875 var1= 0.0006557245 alpha= 0.05 V= 1e+05
weights: GOOG : 0.25 MSFT : 0.25 GE : 0.25 IBM : 0.25
T= 1 VaR= 4347.259
T= 5 VaR= 10040.67
T= 30 VaR= 25953.49
```

1.3.3 Are equity prices log-normal?

It is traditional to do financial analysis under the assumption that the returns are independent, identically distributed normal random variables. This makes the analysis easy, and is a reasonable first approximation. But is it a realistic assumption? In this section we first test the assumption of normality of returns, then do some graphical diagnostics to suggest other models for the returns. (We will not examine time dependence or non-stationarity, just the normality assumption.)

There are several statistical tests for normality. The R package `nortest`, Gross (2008), implements five omnibus tests for normality: Anderson-Darling, Cramer-von Mises, Lilliefors (Kolmogorov-Smirnov), Pearson chi-square, and Shapiro-Francia. This package must first be installed using the Packages menu as mentioned below. Here is a fragment of a R session that applies these tests to the returns of Google stock over a one year period. Note that the text has been edited for conciseness.

```r
> library("nortest")
> price <- get.stock.price("GOOG")
GOOG has 253 values from 2008-01-02 to 2008-12-31
> x <- diff(log(price))
> ad.test(x)
Anderson-Darling test  A = 2.8651, p-value = 3.188e-07
> cvm.test(x)
Cramer-von Mises test  W = 0.4762, p-value = 4.528e-06
> lillie.test(x)
Lilliefors test  D = 0.0745, p-value = 0.001761
```
> pearson.test(x)
 Pearson chi-square test P = 31.1905, p-value = 0.01272
> sf.test(x)
 Shapiro-Francia test W = 0.9327, p-value = 2.645e-08

All five tests reject the null hypothesis that the returns from Google stock are normal. These kinds of results are common for many assets. Since most traditional methods of computational finance assume a normal distribution for the returns, it is of practical interest to develop other distributional models for asset returns. In the next few paragraphs, we will use R graphical techniques to look at the departure from normality and suggest other alternative distributions.

One of the first things you should do with any data set is plot it. The following R commands compute and plot a smoothed density, superimpose a normal fit, and do a normal QQ-plot. The result is shown in Figure 1.7. The density plot shows that while the data is roughly mound shaped, it is leptokurtotic: there is a higher peak and heavier tails than the normal distribution with the same mean and standard deviation. The heavier tails are more evident in the QQ-plot, where both tails of the data are noticeably more spread out than the normal model says they should be. (The added line shows perfect linear correlation between the data and normal fit.)

> price <- get.stock.price("GOOG")
> x <- diff(log(price))
> par(mfrow=c(1,2))
> plot(density(x),main="density of Google returns")
> z <- seq(min(x),max(x),length=201)
> y <- dnorm(z,mean=mean(x),sd=sd(x))
> lines(z,y,lty=2)
> qqnorm(x)
> qqline(x)

So, one question is what kind of distribution better fits the data? The data suggests a model with fatter tails. One popular model is a t-distribution with a few degrees of freedom. The following code fragment defines a function qqt to plot QQ-plots for data vs. a t distribution. The results of this for 3, 4, 5 and 6 degrees of freedom are shown in Figure 1.8. The plots show different behavior on lower and upper tail: 3 d.f. seems to best describe the upper tails, but 4 or 5 d.f. best describes the lower tail.

qqt <- function(data, df){
QQ-plot of data vs. a t-distribution with df degrees of freedom
n <- length(data)
t.quantiles <- qt((1:n - 0.5)/n, df=df)
qqplot(t.quantiles,data,main=paste("t(","df,") Q-Q Plot",sep=""),
 xlab="Theoretical Quantiles",ylab="Sample Quantiles")
}
Fig. 1.7. Google returns in 2008. The left plot shows smoothed density with dashed line showing the normal fit, and the right plot shows a normal QQ-plot.

qqline(data) }

diagnostic plots for data with t distribution with 3, 4, 5, 6 d.f.
par(mfrow=c(2,2))
for (df in 3:6) {
 qqt(x,df)
}

There are many other models proposed for fitting returns, most of them have heavier tails than the normal and some allow skewness. One reference for these models is Rachev (2003). If the tails are really heavy, then the family of stable distributions has many attractive features, including closure under convolution (sums of stable laws are stable) and the Generalized Central Limit Theorem (normalized sums converge to a stable law).

A particularly difficult problem is how to model multivariate dependence. Once you step outside the normal model, it generally takes more than a covariance matrix to describe dependence. In practice, a large portfolio with many assets of different type can have very different behavior for different assets. Some returns may be normal, some t with different degrees of freedom, some a stable law, etc. Copulas are one method of dealing with multivariate distributions, though the limited classes of copulas used in practice seems to have misled people into thinking they had correctly modeled dependence. In addition to modeling complete joint dependence, there is research on modeling
Fig. 1.8. QQ-plots of Google returns in 2008 for t distributions with 3, 4, 5 and 6 degrees of freedom.

tail dependence. This is a less ambitious goal, but could be especially useful in modeling extreme movements by multiple assets - an event that could cause a catastrophic result.

Realistically modeling large portfolios is an important open problem. The recent recession may have been prevented if practitioners and regulators had better models for returns, and ways to effectively model dependence.

1.3.4 R packages for finance

Packages are groups of functions that are used to solve a particular problem. They can be written entirely in the R programming language, or coded in C or Fortran for speed and connected to R. There are many packages being developed to do different tasks. The `rgl` package to do interactive 3-D graphs and the `nortest` package to test normality were mentioned above. You can download these for free and install them (only done once). You can then load them into the program (this must be done each time you start R).

There is an online list of packages useful for empirical finance, see Eddelbuettel (2009). This page has over 100 listings for R packages that are used
in computational finance, grouped by topics: regression models, time series, finance, risk management, etc.

Diethelm Würtz and his group at the Econophysics Group at the Institute of Theoretical Physics of ETH Zurich, have developed a free, large collection of packages called Rmetrics. They have a simple way to install the whole Rmetrics package in two lines:

```r
> source("http://www.rmetrics.org/Rmetrics.R")
> install.Rmetrics()
```

1.4 Open source R vs. commercial packages

We end with a brief comparison of the advantages and disadvantages of open source R vs. commercial packages (matlab, Mathematica, SAS, etc.) While we focus on R, the comments are generally applicable to other open source programs.

Cost Open software is free, with no cost for obtaining the software or running it on any number of machines. Anyone with a computer can use R - whether you work for a large company with a cumbersome purchasing process, are an amateur investor, or are a student in a major research university or in an inner city school, whether you live in Albania or in Zambia. Commercial packages generally cost in the one to two thousand dollar range, making them beyond the reach of many.

Ease of installing and upgrading The R Project has done an excellent job of making it easy to install the core system. It is also easy to quickly download and install packages. When a new version comes out, users can either immediately install the new version, or continue to run an existing version without fear of a license expiring. Upgrades are simple and free.

Verifiability Another advantage of open software is the ability to examine the source code. While most users will not dig through the source code of individual routines, anyone can and someone eventually will. This means that algorithms can be verified by anyone with the interest. Code can be fixed or extended by those who want to add capabilities. (If you’ve ever hit a brick wall with a commercial package that does not work correctly, you will appreciate this feature. Years ago, the author was using a multivariate minimization routine with box constraints from a well known commercial package. After many hours debugging, it was discovered that the problem was in the minimization routine: it would sometimes search outside the specified bounds, where the objective function was undefined. After days of trying to get through to the people who supported this code, and presenting evidence of the problem, they eventually confirmed that it was an issue, but were unwilling to fix the problem or give any work-around.)

Documentation and support No one is paid to develop user friendly documentation for R, so built-in documentation tends to be terse, making
sense to the cognosceti, but opaque to the novice. There is now a large amount of documentation online and books on R, though the problem may still be finding the specific information you want. There are multiple active mailing lists, but with a very heterogeneous group of participants. There are novices struggling with basic features and R developers discussing details of the internals of R. If a bug is found, it will get fixed, though the statement that “The next version of R will fix this problem” may not help much in the short run. Of course, commercial software support is generally less responsive.

Growth There is a vibrant community of contributors to R. With literally thousands of people developing packages, R is a dynamic, growing program. If you don’t like the way a package works, you can write your own, either from scratch or by adapting an existing package from the available source code. A drawback of this distributed development model is that R packages are of unequal quality. You may have to try various packages and select those that provide useful tools.

Stability Software evolves over time, whether open source or commercial. In a robust open source project like R, the evolution can be brisk, with new versions appearing every few months. While most of R is stable, there are occasionally small changes that have unexpected consequences. Packages that used to work, can stop working when a new version comes out. This can be a problem with commercial programs also: a few years ago matlab changed the way mex programs were built and named. Toolboxes that users developed or purchased, sometimes at a significant cost, would no longer work.

Certification Some applications, e.g. medical use and perhaps financial compliance work, may require that the software be certified to work correctly and reproducibly. The distributed development and rapid growth of R has made it hard to do this. There is an effort among the biomedical users of R to find a solution to this issue.

Institutional resistance In some institutions, IT staff may resist putting freeware on a network, for fear that it may be harmful. Also, they are wary of being held responsible for installing, maintaining, and updating software that is not owned/licensed by a standard company.

In the long run, it seems likely that R and other open source packages will survive and prosper. Because of their higher growth rate, they will eventually provide almost all of the features of commercial products. When that point will be reached is unknown. In the classroom, where the focus is on learning and adaptability, the free R program is rapidly displacing other alternatives.

There is a new development in computing that is a blend of free, open source software and commercial support. REvolution Computing (2008) offers versions of R that are optimized and validated, and have developed custom extensions, e.g. parallel processing. This allows a user to purchase a purportedly more stable, supported version of R. It will be interesting to watch where
this path leads; it may be a way to address the institutional resistance men-
tioned above. Another company, Mango Solutions (2009) provides training
in R, with specific courses R for Financial Data Analysis. A third company,
Inference for R (2009), has an integrated development environment that does
syntax highlighting, R debugging, allows one to run R code from Microsoft
Office applications (Excel, Word and PowerPoint), and other features. Finally,
we mention the SAGE Project. SAGE (2008) is an open source mathematics
system that includes R. In addition to the features of R, it includes sym-

1.5 Appendix 1: Obtaining and installing R: R Project
and Comprehensive R Archive Network (CRAN)

The R Project’s website is www.r-project.org, where you can obtain the
R program, packages, and even the source code for R. The Comprehensive
R Archive Network (CRAN) is a coordinated group of over 60 organizations
that maintain servers around the world with copies of the R program (sim-
to the CTAN system for T£X). To download the R program, go to the
R Project website and on the left side of the page, click on “CRAN”, select
a server near you, and download the version of R for your computer type.
(Be warned: this is a large file, over 30 mb.) On Windows, the program name
is something like R-2.10.0-win32.exe, which is version 2.10.0 of R for 32-bit
Windows; newer versions occur every few months and will have higher num-
bers. After the file is on your computer, execute the program. This will go
through the standard installation procedure. For a Mac, the download is a
universal binary file (.dmg) for either a PowerPC or an Intel based proces-
sor. For linux, there are versions for debian, redhat, suse or ubuntu. The R
Project provides free manuals that explain different parts of R. Start on the
R homepage www.r-project.org and click on Manuals on the left side of the
page. A standard starting point is An Introduction to R, which is a PDF file
of about 100 pages. There are dozens of other manuals, some of which are
translated to 13 different languages.

To download a package, it is easiest to use the GUI menu system within R.
Select “Packages” from the main top menu, then select “Install package(s)”.
You will be prompted to select a CRAN server from the first pop-up menu
(pick one near you for speed), then select the package you want to install
from the second pop-up menu. The system will go to the server, download a
compressed form of the package, and install it on your computer. This part
only needs to be done once. Anytime you want to use that package, you have
to load it into your session. This is easy to do from the Packages menu: “Load
package...”, and then select the name of an installed package. You can also
use the `library()` command, as in the example with the `nortest` package above.

If you want to see the source code for R, once you are on the CRAN pages, click on the section for source code.

1.6 Appendix 2: R functions for retrieving finance data

Disclaimer: these functions are not guaranteed for accuracy, nor can we guarantee the accuracy of the Yahoo data. They are very useful in a classroom setting, but should not be relied on as a basis for investing.

```r
# R programs for Math Finance class
# John Nolan, American University  jpnolan@american.edu

get.stock.data <- function( symbol, start.date=c(1,1,2008), stop.date=c(12,31,2008), print.info=TRUE ) {
                start.date[1]-1,"&b=",start.date[2],"&c=",start.date[3],
                "&d=",stop.date[1]-1,"&e=",stop.date[2],"&f=",stop.date[3],"&s=",
                symbol,sep="")
  x <- read.csv(url)
  # data has most recent days first, going back to start date
  n <- length(x$Date); date <- as.character(x$Date[c(1,n)])
  if (print.info) cat(symbol,"has", n,"values from",date[2],"to",date[1],"\n")
  # data is in reverse order from the read.csv command
  x$Date <- rev(x$Date)
  x$Open <- rev(x$Open)
  x$High <- rev(x$High)
  x$Low <- rev(x$Low)
  x$Close <- rev(x$Close)
  x$Volume <- rev(x$Volume)
  x$Adj.Close <- rev(x$Adj.Close)

  return(x) }

get.stock.price <- function( symbol, start.date=c(1,1,2008), stop.date=c(12,31,2008), print.info=TRUE ) {
  # gets adjusted closing price data from yahoo.com for specified symbol
```
x <- get.stock.data(symbol, start.date, stop.date, print.info)

return(x$Adj.Close) }

get.portfolio.returns = function(symbols, start.date=c(1,1,2008),
 stop.date = c(12,31,2008)){
 # get a table of returns for the specified stocks in the stated time period

 n = length(symbols)
 for (i in 1:n) {
 t1 = get.stock.data(symbols[i], start.date=start.date, stop.date=stop.date)
 # need to merge columns, possibly with mismatching dates
 a = data.frame(t1$Date, t1$Adj.Close)
 names(a) = c("Date",symbols[i])
 if (i == 1) {b=a}
 else {b = merge(b,a,sort=FALSE)}
 }
 # leave off the date column
 nn = dim(b)[1]
 cat(" ",nn," dates with values for all stocks,",nn-1," returns calculated\n")
 b = b[,2:ncol(b)]
 bb = data.frame(apply(b,2,"log.ratio"))
 names(bb) = symbols
 return(bb) }

References
